"Institute of Educational Policy" Books

Search

Go
Show

α) Κλάσεις Ίσου Πλάτους

Θεωρώντας το πλάτος c ως μονάδα μέτρησης του χαρακτηριστικού στον οριζόντιο άξονα, το ύψος κάθε ορθογωνίου είναι ίσο προς τη συχνότητα της αντίστοιχης κλάσης, έτσι ώστε να ισχύει πάλι ότι το εμβαδόν των ορθογωνίων είναι ίσο με τις αντίστοιχες συχνότητες. Επομένως, στον κατακόρυφο άξονα σε ένα ιστόγραμμα συχνοτήτων βάζουμε τις συχνότητες. Με ανάλογο τρόπο κατασκευάζεται και το ιστόγραμμα σχετικών συχνοτήτων, οπότε στον κάθετο άξονα βάζουμε τις σχετικές συχνότητες. Αν στα ιστογράμματα συχνοτήτων θεωρήσουμε δύο ακόμη υποθετικές κλάσεις, στην αρχή και στο τέλος, με συχνότητα μηδέν και στη συνέχεια ενώσουμε τα μέσα των άνω βάσεων των ορθογωνίων, σχηματίζεται το λεγόμενο πολύγωνο συχνοτήτων (frequency polygon). Το εμβαδόν του χωρίου που ορίζεται από το πολύγωνο συχνοτήτων και τον οριζόντιο άξονα είναι ίσο με το άθροισμα των συχνοτήτων, δηλαδή με το μέγεθος του δείγματος ν. Όμοια κατασκευάζεται από το ιστόγραμμα σχετικών συχνοτήτων και το πολύγωνο σχετικών συχνοτήτων με εμβαδόν ίσο με 1, (βλέπε σχήμα 6). [pic] [pic]

(α)

(β)

Ιστόγραμμα και πολύγωνο (α) συχνοτήτων και (β) σχετικών συχνοτήτων για τα δεδομένα του πίνακα 9. [pic] Με τον ίδιο τρόπο κατασκευάζονται και τα ιστογράμματα αθροιστικών συχνοτήτων και αθροιστικών σχετικών συχνοτήτων. Αν ενώσουμε σε ένα ιστόγραμμα αθροιστικών συχνοτήτων τα δεξιά άκρα (όχι μέσα) των άνω βάσεων των ορθογωνίων με ευθύγραμμα τμήματα βρίσκουμε το πολύγωνο αθροιστικών συχνοτήτων (ogive) της κατανομής. Στο σχήμα 7 παριστάνεται το ιστόγραμμα και το πολύγωνο αθροιστικών σχετικών συχνοτήτων για το ύψος των μαθητών του πίνακα 9 .