Διδακτικά Βιβλία του Παιδαγωγικού Ινστιτούτου

Αναζήτηση

Βρες
Εμφάνιση

2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ [symbol]

Εισαγωγή

Η επίλυση των εξισώσεων 3ου και 4ου βαθμού, η "αναγκαστική" επαφή με τους μιγαδικούς αριθμούς για την έκφραση των πραγματικών ριζών και η εξέλιξη του αλγεβρικού λογισμού δημιούργησαν στις αρχές του 17ου αιώνα τις προϋποθέσεις για την ανάπτυξη μιας γενικής θεωρίας των πολυωνυμικών εξισώσεων στην Άλγεβρα. Βασικά στοιχεία αυτής της θεωρίας δεν ήταν μόνο οι μέθοδοι επίλυσης, αλλά και δομικά ζητήματα, όπως οι σχέσεις ριζών και συντελεστών μιας εξίσωσης, καθώς και η σχέση ανάμεσα στο βαθμό και στο πλήθος των ριζών. Το τελευταίο, που καθιερώθηκε αργότερα ως Θεμελιώδες Θεώρημα της Άλγεβρας "κάθε πολυωνυμική εξίσωση ν βαθμού έχει στο σύνολο των μιγαδικών ν ακριβώς ρίζες", διατυπώνεται στην αρχή διστακτικά, καθώς οι μιγαδικοί δε θεωρούνται ακόμη ισότιμοι προς τους υπόλοιπους αριθμούς. Ο R. Descartes, στο βιβλίο ΙΙΙ της "La Geometrie" (1637) γράφει ότι: "κάθε εξίσωση μπορεί να έχει τόσες διαφορετικές ρίζες όσες και οι διαστάσεις [δηλ. ο βαθμός] της άγνωστης ποσότητας στην εξίσωση", αλλά ονομάζει τις θετικές ρίζες "αληθινές", τις αρνητικές "ψεύτικες" και εισάγει για πρώτη φορά τον όρο "φανταστικές" για τις υπόλοιπες: "…ενώ μπορούμε να θεωρήσουμε ότι η εξίσωση [pic] έχει τρεις ρίζες, εν τούτοις υπάρχει μία μόνο πραγματική ρίζα, το 2, ενώ οι άλλες δύο παραμένουν φανταστικές". Το θεμελιώδες θεώρημα της Άλγεβρας άρχισε να αποκτά εξαιρετική σημασία με την ανάπτυξη της Ανάλυσης, καθώς η παραγοντοποίηση των πολυωνύμων έπαιζε πρωταρχικό ρόλο στον υπολογισμό ολοκληρωμάτων (διάσπαση ρητών κλασμάτων σε απλά κλάσματα). Ο G.W. Leibniz έθεσε το 1702 αυτό το ζήτημα ισχυριζόμενος (λαθεμένα) ότι το πολυώνυμο [pic] δεν αναλύεται σε γινόμενο παραγόντων 1ου ή 2ου βαθμού με πραγματικούς συντελεστές. Το γεγονός αυτό οδήγησε στις πρώτες συστηματικές προσπάθειες να αποδειχτεί ότι κάθε πολυώνυμο με πραγματικούς συντελεστές αναλύεται σε γινόμενο παραγόντων 1ου ή 2ου βαθμού, που αποτελεί μια άλλη ισοδύναμη μορφή του θεμελιώδους θεωρήματος. Ύστερα από ορισμένες ημιτελείς προσπάθειες των d’Alembert (1746), L. Euler (1749) και J.L. Lagrange (1772), ο C.F. Gauss έδωσε την πρώτη αυστηρή απόδειξη το 1799 (σε ηλικία 22 χρονών), στη διδακτορική του διατριβή που είχε τίτλο: "Νέα απόδειξη του θεωρήματος ότι κάθε ακέραια ρητή συνάρτηση μιας μεταβλητής μπορεί να αναλυθεί σε πραγματικούς παράγοντες πρώτου και δεύτερου βαθμού".