"Institute of Educational Policy" Books
Αξιωματικός Ορισμός Πιθανότητας
Για να μπορεί όμως να χρησιμοποιηθεί ο κλασικός ορισμός της πιθανότητας σε ένα δειγματικό χώρο με πεπερασμένο πλήθος στοιχείων, είναι απαραίτητο τα απλά ενδεχόμενα να είναι ισοπίθανα. Υπάρχουν όμως πολλά πειράματα τύχης, των οποίων ο δειγματικός χώρος δεν αποτελείται από ισοπίθανα απλά ενδεχόμενα. Όπως για παράδειγμα ο αριθμός των αυτοκινητιστικών δυστυχημάτων μια ορισμένη εβδομάδα, η ρίψη ενός ζαριού που δεν είναι συμμετρικό κτλ. Για τις περιπτώσεις αυτές χρησιμοποιούμε τον παρακάτω αξιωματικό ορισμό της πιθανότητας, ο οποίος έχει ανάλογες ιδιότητες με τη σχετική συχνότητα. Έστω [pic] ένας δειγματικός χώρος με πεπερασμένο πλήθος στοιχείων. Σε κάθε απλό ενδεχόμενο [pic] αντιστοιχίζουμε έναν πραγματικό αριθμό, που τον συμβολίζουμε με [pic], έτσι ώστε να ισχύουν: - [pic] - [pic]. Τον αριθμό [pic] ονομάζουμε πιθανότητα του ενδεχομένου [pic]. Ως πιθανότητα [pic] ενός ενδεχομένου [pic] ορίζουμε το άθροισμα [pic], ενώ ως πιθανότητα του αδύνατου ενδεχομένου [pic] ορίζουμε τον αριθμό [pic]. Αν [pic], [pic], τότε έχουμε τον κλασικό ορισμό της πιθανότητας ενός ενδεχομένου. Στην πράξη, ιδιαίτερα στην περίπτωση που δεν ισχύει ο κλασικός ορισμός της πιθανότητας, ως πιθανότητα ενός ενδεχομένου Α λαμβάνεται το όριο της σχετικής του συχνότητας.
ΣΧΟΛΙΟ
Όταν έχουμε ένα δειγματικό χώρο [pic] και χρησιμοποιούμε τη φράση "παίρνουμε τυχαία ένα στοιχείο του Ω", εννοούμε ότι όλα τα δυνατά αποτελέσματα είναι ισοπίθανα με πιθανότητα [pic], [pic].