"Institute of Educational Policy" Books
1.5 Κατηγορίες προβλημάτων
Τα προβλήματα που απαντώνται τόσο στους διάφορους επιστημονικούς τομείς, όσο και στην καθημερινή μας ζωή, ποικίλουν ως προς τη φύση τους. Από τα παραδείγματα που έχουμε παραθέσει, έχει γίνει αντιληπτό πως τα προβλήματα δεν σχετίζονται υποχρεωτικά και αποκλειστικά με τα μαθηματικά ή γενικότερα με μαθηματικές και υπολογιστικές διαδικασίες με σκοπό την επίτευξη λύσης τους. Η διαφορετική φύση των προβλημάτων επιτρέπει την κατηγοριοποίησή τους σύμφωνα με ποικίλα κριτήρια.
1. Με κριτήριο τη δυνατότητα επίλυσης ενός προβλήματος, διακρίνουμε τρεις κατηγορίες προβλημάτων : - Επιλύσιμα, είναι εκείνα τα προβλήματα για τα οποία η λύση τους είναι ήδη γνωστή και έχει διατυπωθεί. Επιλύσιμα μπορεί επίσης να χαρακτηριστούν και προβλήματα, των οποίων η λύση δεν έχει ακόμα διατυπωθεί, αλλά ή συνάφειά τους με άλλα ήδη επιλυμένα μας επιτρέπει να θεωρούμε σαν βέβαιη τη δυνατότητα επίλυσής τους. - Ανοικτά, ονομάζονται εκείνα τα προβλήματα για τα οποία η λύση τους δεν έχει μεν ακόμα βρεθεί, αλλά παράλληλα δεν έχει αποδειχθεί, ότι δεν επιδέχονται λύση. Σαν παράδειγμα ανοικτού προβλήματος μπορούμε να αναφέρουμε το πρόβλημα της ενοποίησης των τεσσάρων πεδίων δυνάμεων, που αναφέρουμε σε προηγούμενη παράγραφο. - Άλυτα, χαρακτηρίζονται εκείνα τα προβλήματα για τα οποία έχουμε φτάσει στην παραδοχή, ότι δεν επιδέχονται λύση. Τέτοιου είδους πρόβλημα είναι το γνωστό από τους αρχαίους ελληνικούς χρόνους πρόβλημα του τετραγωνισμού του κύκλου. Το πρόβλημα αυτό θεωρείται άλυτο, στην πραγματικότητα η λύση που επιδέχεται είναι προσεγγιστική.
2. Με κριτήριο το βαθμό δόμησης των λύσεών τους, τα επιλύσιμα προβλήματα μπορούν να διακριθούν σε τρεις επίσης κατηγορίες : - Δομημένα, χαρακτηρίζονται εκείνα τα προβλήματα των οποίων η επίλυση προέρχεται από μια αυτοματοποιημένη διαδικασία. Για παράδειγμα, η επίλυση της δευτεροβάθμιας εξίσωσης αποτελεί ένα δομημένο πρόβλημα, αφού ο τρόπος επίλυσης της εξίσωσης είναι γνωστός και αυτοματοποιημένος. - Ημιδομημένα, ονομάζονται τα προβλήματα εκείνα των οποίων η λύση επιδιώκεται στα πλαίσια ενός εύρους πιθανών λύσεων, αφήνοντας στον ανθρώπινο παράγοντα περιθώρια επιλογής της. Σαν παράδειγμα ημιδομημένου προβλήματος μπορούμε να αναφέρουμε ένα πρόβλημα όπου ένας ταξιδιώτης αναζητά να επιλέξει το μεταφορικό μέσο μετακίνησής του από ένα μέρος σε κάποιο άλλο. Το πρόβλημα είναι ημιδομημένο, δεδομένου ότι η λύση που θα επιλεγεί, πρέπει να αναζητηθεί σε ένα σύνολο σαφώς προκαθορισμένο που συμπεριλαμβάνει όλα τα διαθέσιμα μεταφορικά μέσα. - Αδόμητα, χαρακτηρίζονται τα προβλήματα εκείνα των οποίων οι λύσεις δεν μπορούν να δομηθούν ή δεν έχει διερευνηθεί σε βάθος η δυνατότητα δόμησής τους. Πρωτεύοντα ρόλο στην επίλυση αυτού του τύπου προβλημάτων κατέχει η ανθρώπινη διαίσθηση. Παράδειγμα αδόμητου προβλήματος είναι η επιλογή του τρόπου, του τόπου και του χρόνου ενός εφηβικού πάρτυ. Είναι σαφές ότι δεν υπάρχει κανένας προδιατυπωμένος τρόπος οργάνωσης ενός εφηβικού πάρτυ και όλοι οι παράγοντες που θα το διαμορφώσουν επαφίονται στην ανθρώπινη αίσθηση και προτίμηση των διοργανωτών του.
3. Το κάθε πρόβλημα σε ότι αφορά στην επίλυσή του, είναι στενά συνδεδεμένο με την έννοια του αλγόριθμου που παρουσιάζουμε αναλυτικά στο επόμενο κεφάλαιο. Με κριτήριο το είδος της επίλυσης που επιζητούν, τα προβλήματα διακρίνονται σε τρεις κατηγορίες : - Απόφασης, όπου η απόφαση που πρόκειται να ληφθεί σαν λύση του. προβλήματος που τίθεται, απαντά σε ένα ερώτημα και πιθανόν αυτή η απάντηση να είναι ένα "Ναι" ή ένα "Όχι". Αυτό που θέλουμε να διαπιστώσουμε σε ένα πρόβλημα απόφασης είναι αν υπάρχει απάντηση που ικανοποιεί τα δεδομένα που θέτονται από το πρόβλημα.
Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και το πρόβλημα που τίθεται είναι, αν ο αριθμός Ν είναι πρώτος.
- Υπολογιστικά, όπου το πρόβλημα που τίθεται απαιτεί τη διενέργεια υπολογισμών, για να μπορεί να δοθεί μία απάντηση στο πρόβλημα. Σε ένα υπολογιστικό πρόβλημα ζητάμε να βρούμε τη τιμή της απάντησης που ικανοποιεί τα δεδομένα που παρέχει το πρόβλημα.
Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και ζητείται να βρεθεί πόσες διαφορετικές παραγοντοποιήσεις του Ν υπάρχουν.
- Βελτιστοποίησης, όπου το πρόβλημα που τίθεται επιζητά το βέλτιστο αποτέλεσμα για τα συγκεκριμένα δεδομένα που διαθέτει. Σε ένα πρόβλημα βελτιστοποίησης αναζητούμε την απάντηση που ικανοποιεί κατά τον καλύτερο τρόπο τα δεδομένα που παρέχει το πρόβλημα.
Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και ζητείται ποια είναι η παραγοντοποίηση για το Ν με το μεγαλύτερο πλήθος παραγόντων.