Διδακτικά Βιβλία του Παιδαγωγικού Ινστιτούτου

Αναζήτηση

Βρες
Εμφάνιση

3-4 O ΝΟΜΟΣ ΤΟΥ GAUSS (Γκάους)

Σχ. 3.7 Το σημειακό φορτίο q βρίσκεται στο κέντρο σφαίρας ακτίνας r.

Ο νόμος αυτός συνδέει την ηλεκτρική ροή που διέρχεται από μια κλειστή επιφάνεια με το φορτίο που περικλείει η επιφάνεια.

Έστω ένα σημειακό θετικό φορτίο q. Ας φανταστούμε μια σφαίρα ακτίνας r, όπως στο σχήμα 3.7, που έχει κέντρο το σημείο στο οποίο βρίσκεται το φορτίο. Θα υπολογίσουμε την ηλεκτρική ροή που διέρχεται από την σφαίρα. Γνωρίζουμε ότι η ένταση του ηλεκτρικού πεδίου στην επιφάνεια της σφαίρας έχει μέτρο [pic] (3.2) διεύθυνση ακτινική και φορά προς τα έξω.

Χωρίζουμε την επιφάνεια της σφαίρας σε στοιχειώδη τμήματα ΔΑ, τόσο μικρά ώστε το καθένα από αυτά να μπορεί να θεωρηθεί επίπεδο. Οι δυναμικές γραμμές του πεδίου που δημιουργεί το q τέμνουν κάθετα κάθε στοιχειώδη επιφάνεια ΔΑ και το κάθετο διάνυσμα ΔΑ σε κάθε τέτοια επιφάνεια είναι παράλληλο με τις δυναμικές γραμμές. Η ολική ροή που διέρχεται από την επιφάνεια της σφαίρας είναι [pic] (3.3)

Σχ. 3.8 Η ηλεκτρική ροή που διέρχεται από τις δύο επιφάνειες είναι ίδια.

Ο όρος [pic] δίνει το εμβαδόν της σφαιρικής επιφάνειας που είναι ίσο με [pic]. Από τις σχέσεις (3.3) και (3.2) παίρνουμε [pic]

Σχ. 3.9 Το φορτίο q βρίσκεται έξω από την επιφάνεια. Οι δυναμικές γραμμές του πεδίου που δημιουργεί και εισέρχονται σ’ αυτή εξέρχονται από κάποιο άλλο σημείο απ’ αυτή. Η συνολική ηλεκτρική ροή που περνάει από την επιφάνεια είναι ίση με μηδέν.

Από τη σχέση αυτή προκύπτει ότι η ηλεκτρική ροή (ΦΕ) είναι ανεξάρτητη της ακτίνας r της σφαίρας που επιλέξαμε. Αυτό είναι λογικό γιατί, το πλήθος των δυναμικών γραμμών που περνά από οποιαδήποτε σφαιρική επιφάνεια με κέντρο το φορτίο είναι ίδιο ανεξάρτητα από την ακτίνα της. Στην πραγματικότητα η επιφάνεια δεν χρειάζεται να είναι σφαιρική. Από οποιαδήποτε κλειστή επιφάνεια, που περικλείει το φορτίο q, (σχ. 3.8) θα περνάει ίδιος αριθμός δυναμικών γραμμών. Επομένως, η ηλεκτρική ροή για κάθε κλειστή επιφάνεια που περικλείει το φορτίο q είναι ίση με αυτή που βρήκαμε για τη σφαίρα, δηλαδή [pic] Το συμπέρασμα στο οποίο καταλήξαμε γενικεύεται και στην περίπτωση που έχουμε πολλά σημειακά φορτία, ή φορτισμένα σώματα. Με την αρχή της επαλληλίας αποδεικνύεται ότι η ηλεκτρική ροή που διέρχεται από μια οποιαδήποτε κλειστή επιφάνεια είναι ίση με Qεγκ/εο όπου Qεγκ το φορτίο που περικλείεται από την κλειστή επιφάνεια. Η παραπάνω πρόταση αποτελεί το νόμο του Gauss για το ηλεκτρικό πεδίο. Σύμφωνα με αυτόν η ηλεκτρική ροή που διέρχεται από μια κλειστή επιφάνεια ισούται με το πηλίκο του ολικού φορτίου που περικλείει η επιφάνεια, προς τη σταθερά εο. [pic] (3.4)

Εικ.3.1 Karl Friedrich Gauss. (1777-1855). Γερμανός, ένας από τους μεγαλύτερους μαθηματικούς όλων των αιώνων.

Την κλειστή επιφάνεια που επιλέγουμε για να εφαρμόσουμε το νόμο του Gauss θα την ονομάζουμε επιφάνεια Gauss. Κατά την εφαρμογή του νόμου του Gauss πρέπει να είμαστε προσεκτικοί. Ενώ το φορτίο Qεγκ στη σχέση (3.4) είναι το φορτίο που βρίσκεται μέσα στην επιφάνεια Gauss, το Ε είναι το ολικό ηλεκτρικό πεδίο που οφείλεται τόσο σε φορτία που βρίσκονται μέσα στην επιφάνεια όσο και σε φορτία που βρίσκονται έξω από αυτήν.

Ο νόμος του Gauss είναι θεμελιώδους σημασίας στην ηλεκτροστατική. Η σημασία του είναι ανάλογη με αυτήν του νόμου του Coulomb. Στην πραγματικότητα ο νόμος του Gauss και ο νόμος του Coulomb δεν είναι δυο ανεξάρτητοι φυσικοί νόμοι, αλλά ο ίδιος νόμος που εκφράζεται με δύο διαφορετικούς τρόπους.

Στη συνέχεια θα δούμε ότι ο νόμος του Gauss δίνει εύκολα την ένταση του ηλεκτρικού πεδίου σε περιπτώσεις όπου έχουμε συμμετρική κατανομή φορτίου.