Διδακτικά Βιβλία του Παιδαγωγικού Ινστιτούτου

Αναζήτηση

Βρες
Εμφάνιση

Κλασικός Ορισμός Πιθανότητας

Ας εξετάσουμε την ειδική περίπτωση του αμερόληπτου νομίσματος. Ρίχνουμε ένα τέτοιο νόμισμα και παρατηρούμε την όψη που θα εμφανιστεί. Όπως διαπιστώσαμε προηγουμένως η σχετική συχνότητα καθενός από τα απλά ενδεχόμενα [pic] τείνει στον αριθμό [pic]. Ομοίως θα μπορούσαμε να διαπιστώσουμε ότι στη ρίψη ενός αμερόληπτου ζαριού η σχετική συχνότητα καθενός από τα απλά ενδεχόμενα [pic] και [pic] τείνει στον αριθμό [pic]. Σε πειράματα όπως τα προηγούμενα λέμε ότι τα δυνατά αποτελέσματα ή, ισοδύναμα, τα απλά ενδεχόμενα είναι ισοπίθανα. Ας δούμε τώρα ποια αναμένουμε να είναι η σχετική συχνότητα ενός σύνθετου ενδεχομένου σε ένα πείραμα με ισοπίθανα αποτελέσματα. Έστω για παράδειγμα, το ενδεχόμενο να φέρουμε ζυγό αριθμό στη ρίψη ενός αμερόληπτου ζαριού. Επειδή το ενδεχόμενο αυτό πραγματοποιείται όταν το αποτέλεσμα του πειράματος είναι 2 ή 4 ή 6 και καθένα από τα αποτελέσματα αυτά εμφανίζεται με σχετική συχνότητα [pic], η συχνότητα εμφάνισης του ζυγού αριθμού αναμένεται να είναι [pic]. Γενικά, σε ένα πείραμα με ν ισοπίθανα αποτελέσματα η σχετική συχνότητα ενός ενδεχομένου με κ στοιχεία θα τείνει στον αριθμό [pic]. Γι’ αυτό είναι εύλογο σε ένα πείραμα με ισοπίθανα αποτελέσματα να ορίσουμε ως πιθανότητα του ενδεχομένου Α τον αριθμό: [pic]. Έτσι, έχουμε τον κλασικό ορισμό της πιθανότητας, που διατυπώθηκε από τον Laplace το 1812. Από τον προηγούμενο ορισμό προκύπτει άμεσα ότι: 1. [pic] 1. [pic] 3. Για κάθε ενδεχόμενο Α ισχύει [pic], αφού το πλήθος των στοιχείων ενός ενδεχομένου είναι ίσο ή μικρότερο από το πλήθος των στοιχείων του δειγματικού χώρου.