Διδακτικά Βιβλία του Παιδαγωγικού Ινστιτούτου

Αναζήτηση

Βρες
Εμφάνιση

Οι μέθοδοι των Φυσικών Επιστημών

Οι επιστήμονες, στην προσπάθειά τους να περιγράψουν και να ερμηνεύσουν τα φυσικά φαινόμενα, χρησιμοποιούν διάφορες μεθόδους έρευνας. Συνήθως ξεκινούν από την παρατήρηση και μετά διατυπώνουν ερωτήσεις. Επειδή παρατηρούμε με τις αισθήσεις μας, είναι ανάγκη να εξασκηθούμε στη χρήση τους. Ο επιστήμονας έχοντας εντοπίσει το πρόβλημα και προετοιμαζόμενος για τη λύση του, διαθέτει ένα μεγάλο ποσοστό του χρόνου του για να βρει και να μελετήσει πληροφορίες, παρατηρήσεις και συμπεράσματα άλλων επιστημόνων, που σχετίζονται με το πρόβλημα που τον απασχολεί. Η αναζήτηση γίνεται στα βιβλία, στα περιοδικά, στο διαδίκτυο (Internet) κ.τ.λ. Έτσι, θα μπορέσει να αναπτύξει μια υπόθεση (μια εικασία) για το πρόβλημά του, την οποία θα πρέπει να ελέγξει οργανώνοντας το κατάλληλο πείραμα. Αν με το πείραμα αυτό επιβεβαιώσει την υπόθεσή του, τότε αυτή θα εξελιχθεί σε θεωρία, νόμο ή αρχή που θα περιγράφει ή ερμηνεύει φυσικά φαινόμενα. Σε διαφορετική περίπτωση θα πρέπει να τροποποιήσει την υπόθεσή του και να οργανώσει τον επανέλεγχό της κ.ο.κ.

Η ανάπτυξη μιας υπόθεσης και ο έλεγχός της είναι μια πολύπλοκη διαδικασία που απαιτεί φαντασία, διαφορετική από αυτή των καλλιτεχνών, αλλά και επινοητικότητα. Η μεγάλη δυσκολία είναι να φανταστεί ο επιστήμονας κάτι που δεν το έχει δει ποτέ, που να είναι συνεπές σε κάθε του λεπτομέρεια με όσα έχουν ήδη παρατηρηθεί και ταυτόχρονα διαφορετικό από όσες σκέψεις έχουν ήδη διατυπωθεί. Επιπλέον, η πρόταση πρέπει να διακρίνεται από σαφήνεια και απλότητα. Μπορεί όμως αργότερα να εμφανιστεί η ανάγκη αλλαγής της θεωρίας ή του νόμου, αν οι νόμοι δεν συμφωνούν με τις παρατηρήσεις - πειράματα. Στη μελέτη πολλών φαινομένων, όπως για παράδειγμα η κίνηση των σωμάτων, η ηλεκτρική αγωγιμότητα κ.λπ., θα σας δοθεί η ευκαιρία να ακολουθήσετε τη μέθοδο που αναφέραμε και να εξοικειωθείτε με αυτή. Όμως για να πειραματιστείτε και να οδηγηθείτε σε νόμους απαιτείται όχι μόνο ποιοτική ενασχόληση με το πρόβλημα, αλλά και ποσοτική, που προκύπτει από ακριβείς μετρήσεις με τη βοήθεια κατάλληλων οργάνων.

Ο Γαλιλαίος τον 16ο αιώνα είναι ο πρώτος που χρησιμοποίησε τη γλώσσα των μαθηματικών για να περιγράψει τις κινήσεις των σωμάτων. Γι' αυτό θεωρείται ο πρωτοπόρος της σύγχρονης Φυσικής Επιστήμης. Αυτός έλεγε χαρακτηριστικά: "Η Φιλοσοφία (η Φυσική Επιστήμη θα λέγαμε σήμερα), είναι γραμμένη σ' αυτό το τεράστιο βιβλίο που στέκεται ανοικτό μπροστά στα μάτια μας. Δεν μπορούμε όμως να το διαβάσουμε αν δεν μάθουμε πρώτα τη γλώσσα και το αλφάβητο με το οποίο έχει γραφεί. Η γλώσσα του είναι τα μαθηματικά και το αλφάβητό του τα τρίγωνα, οι κύκλοι και τα άλλα γεωμετρικά σχήματα". Τόνισε επίσης τον ουσιαστικό ρόλο της μέτρησης στην περιγραφή της φύσης και υπογράμμισε ότι "πρέπει να περιορισθούμε σε ιδιότητες των σωμάτων και έννοιες που μπορούν να μετρηθούν".

Η διαφορά της σύγχρονης Φυσικής Επιστήμης από την επιστήμη των Φυσικών Φιλοσόφων στην αρχαιότητα είναι ότι, η πρώτη συνδυάζει το πείραμα με τη γλώσσα των μαθηματικών. Έτσι, η έκφραση των φυσικών νόμων και θεωριών, δηλαδή η περιγραφή ή η ερμηνεία των φυσικών φαινομένων γίνεται με μαθηματικούς όρους, εξισώσεις, κ.α.

Η μέθοδος που αναφέρθηκε ονομάζεται πειραματική επαγωγική. Μπορούμε όμως να ακολουθήσουμε και την αντίστροφη πορεία, δηλαδή θεωρητικά, στηριζόμενοι σε προηγούμενη γνώση, να παράγουμε καινούργια γνώση, η οποία βέβαια για να ισχύει απαιτεί την πειραματική της επαλήθευση. Η μέθοδος αυτή λέγεται παραγωγική. Για παράδειγμα, από το συνδυασμό των γνώσεών μας για την ευθύγραμμη ομαλή κίνηση και την ελεύθερη πτώση των σωμάτων, μπορούμε να προβλέψουμε την κίνηση ενός σώματος που εκτοξεύεται με οριζόντια ταχύτητα.

Δεν υπάρχει επιπλέον, καμία αυθεντία που να αποφασίζει ποια ιδέα είναι καλή. Δεν είμαστε πια αναγκασμένοι να απευθυνόμαστε σε αυθεντίες για να μάθουμε κατά πόσο μια ιδέα είναι αληθινή ή όχι. Μπορούμε να διαβάσουμε το έργο της αυθεντίας και να δούμε εκεί τι προτείνει. Τη σχετική πρόταση μπορούμε να την υποβάλλουμε σε έλεγχο και να διαπιστώσουμε αν είναι αληθινή ή όχι. Κι αν δεν είναι αληθινή, τόσο το χειρότερο - έτσι οι "αυθεντίες" χάνουν κάτι από το "κύρος" τους. R. Feynman

Ο Φιλόσοφος P. Feyerabend στο έργο του "Ενάντια στη μέθοδο", γράφει: "…μπορούμε να χρησιμοποιούμε υποθέσεις που αντιφάσκουν με επικυρωμένες θεωρίες ή και με γενικώς αποδεκτά πειραματικά αποτελέσματα. Μπορούμε να προάγουμε την επιστήμη με αντιεπαγωγικές ενέργειες".

Δεν μπορούμε να πούμε ότι υπάρχει ένας μόνο τρόπος για να λύσουμε ένα πρόβλημα ή μια μόνο επιστημονική μέθοδος. Εκτός από τις μεθόδους που αναφέραμε μπορούμε να χρησιμοποιήσουμε για τη λύση ενός προβλήματος και τη μέθοδο δοκιμής και λάθους. Αυτή είναι μια μέθοδος που ακολουθούν τα ζώα και τα μικρά παιδιά για να λύσουν τα προβλήματά τους. Οι επιστήμονες επίσης, μερικές φορές χρησιμοποιούν αυτή τη μέθοδο για να λύσουν στοιχειώδη ή ειδικά προβλήματα. Παραδείγματος χάρη, αν ένας επιστήμονας θέλει να ελέγξει ποια βακτήρια επηρεάζονται από μια χημική ουσία, θα πρέπει να πειραματιστεί με πολλά τέτοια βακτήρια μέχρις ότου βρει αυτά που δεν επηρεάζονται από την παρουσία αυτής της χημικής ουσίας. Η επιστημονική γνώση αναπτύσσεται και αλλάζει τόσο γρήγορα, έτσι ώστε μερικά πράγματα που θα μάθετε στο σχολείο μπορεί να μην ισχύουν μετά από κάποια χρόνια. Τότε τι είναι εκείνο που κυρίως απομένει από τη μελέτη και την ενασχόληση με τις Φ.Ε; Η απάντηση είναι η μέθοδος, ο τρόπος με τον οποίο παράγεται η καινούργια γνώση, ο τρόπος με τον οποίο προσεγγίζεται η φύση για να ερμηνευθεί και να περιγραφεί.